Nuprl Lemma : fun-connected-causle 11,40

es:ES, X:AbsInterface(Top), f:(E(X)E(X)).
(x:E(X). f(x) c x (ee':E(X). e' is f*(e e' c e
latex


Definitionss = t, t  T, x:AB(x), x:AB(x), EState(T), a:A fp B(a), f(a), Id, , strong-subtype(A;B), P  Q, Type, EqDecider(T), Unit, left + right, IdLnk, x:A  B(x), EOrderAxioms(Epred?info), kindcase(ka.f(a); l,t.g(l;t) ), Knd, loc(e), kind(e), Msg(M), type List, , val-axiom(E;V;M;info;pred?;init;Trans;Choose;Send;val;time), r  s, e < e', , b, constant_function(f;A;B), SWellFounded(R(x;y)), , pred!(e;e'), x,yt(x;y), <ab>, A, pred(e), first(e), xt(x), P & Q, Top, ES, AbsInterface(A), E, {x:AB(x)} , E(X), let x,y = A in B(x;y), t.1, e c e', (e < e'), P  Q, y is f*(x), e loc e' , (e <loc e'), e(e1,e2].P(e), @e(xv), (last change to x before e), A c B, pred(e), x:AB(x), hd(l), y=f*(x) via L, P  Q, P  Q, lastchange(x;e), es-init(es;e), True, sender(e), (x  l), A List, [car / cdr], [], a < b, {T}, T, False, Void, case b of inl(x) => s(x) | inr(y) => t(y), if b then t else f fi , e  X, #$n, l[i], t  ...$L, , Outcome, ||as||, n+m, A  B, i  j , loc(e)
Lemmases-causle transitivity, non neg length, length wf1, false wf, es-causle weakening locl, es-le weakening eq, fun-path-cons, fun-path wf, event system wf, es-interface wf, fun-connected wf, es-le-causle, es-causle-le, es-locl wf, es-le wf, es-causl wf, es-causle wf, es-E-interface-subtype rel, es-E wf, es-E-interface wf, deq wf, EOrderAxioms wf, IdLnk wf, Msg wf, unit wf, nat wf, val-axiom wf, qle wf, cless wf, bool wf, top wf, Knd wf, kindcase wf, constant function wf, assert wf, not wf, loc wf, pred! wf, strongwellfounded wf, member wf, rationals wf, Id wf, EState wf, subtype rel wf

origin